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Low-Temperature Properties of a Quantum Fermi 
Gas in Curved Space-Time 
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We consider the behavior of an ideal quantum Fermi gas in curved space-time. 
We obtain and analyze the expressions for the densities of the Helmholtz free 
energy and grand thermodynamic potential in this case. We find the dependence 
of chemical potential and Fermi energy on the curvature of space-time and 
compute the explicit expression for the chemical potential of a Fermi gas at high 
densities and in the low-temperature approximation. 

1. INTRODUCTION 

In this work, we develop the methods of local statistical thermodynamics 
(Kulikov and Pronin, 1993) with application to the ideal fermionic gas in 
curved space-time. We base our research on the Schwinger-DeWitt proper 
time formalism (DeWitt, 1965) and a local momentum space method (Bunch 
and Parker, 1979; Panangaden, 1981) in quantum field theory in an arbitrary 
curved space-time and also on the imaginary time formalism to introduce 
the temperature into the model (Dolan and Jackiw, 1974; Weinberg, 1974). 
To compute thermodynamic potentials of the quantum Fermi gas, we use its 
connection with finite-temperature Green's functions, which may be found 
by the local momentum space method. Such an approach allows us to intro- 
duce the chemical potential in the model and find its dependence on the 
curvature of the time-independent background gravitational field. We also 
show that the Fermi energy will change with the curvature of the space-time. 
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2. H E L M H O L T Z  F R E E  E N E R G Y  O F  T H E  F E R M I  G A S  I N  
C U R V E D  SPACE-TIME 

We will consider that both fermions and gravity are present. Then the 
total Lagrangian of the system is 

Lto t = Lg + L m (2.1) 

where 

1 
Lg = 16"rr-----G (R - 2A) + otR 2 + f3Rr ~ + 3pR~,,,R~" (2.2) 

is the gravitational Lagrangian and 

i 
Lm = ~ ~(x)(y~(x)D~ + m)qJ(x) (2.3) 

is the fermionic matter field Lagrangian. The covariant derivative may be 
written in the form D~ = O, - F~, where Fr describes the coupling spinors 
with gravitational field. Matrices y~(x) obey anti-commutation relations 
{'y~(x), y~(x)} = 2g~(x)l.  The effective action for the matter field in curved 
space-time (Birrell and Davies, 1982) is 

i f Sen = ~ In Det[-Gf]  = dgx x/g(x)Leff(x) (2.4) 

where 

Leff = ~ dm 2 tr Gf(x, x') (2.5) 
m 

is the density of the effective Lagrangian of the matter field. The bispinor 
Green's function Gi(x, x') is the solution of the equation 

D~D~ + ~ R - m  2 af(x, x') = -g(x)-l/2~(x - x')l (2.6) 

where R is the scalar of curvature and g is minus the determinant of the 
background metric g~ .  It may be found by the Schwinger-DeWitt procedure 
(DeWitt, 1965) and has the form 

af(x, x') = iAl/2(x, x') i ds (4"rris) -a 

( - ~ s )  "is)  (2.7) •  - ism 2 tr F(x, x , 



Quantum Fermi Gas in Curved Space-Time 1845 

where AI/2(X, X')  is the Van Vleck determinant and or(x, x') is half the square 
of the geodesic distance between points x and x'. The function F(x, x'; is) 
is the series 

F(x, x'; is) = ~ &j(x, x ' )( is)  -i (2.8) 
0 

where the coefficients 6~j(x, x') describe the non-Euclidean space-time struc- 
ture. In the limit x = x' they are 6Lj(x, x) = &j(R): 

1, at(R) = ~2 R. i do(R) 

( 1 ~ 8  1 ) &2(R) = -1--~ R:~  + R2 - ~180 R ~ ' R ~  + 180 R ~ , ~ R  ~ ' ~  �9 i 

+ 4---8 GI~'~]Gt~IR R at (2.9) 

t with GEnii = 7[~',~, "/~]. 
To introduce temperature, we can assume that V4) is a static manifold 

with topology S ~ • M3), where/143) is the spatial three-dimensional manifold, 
while the time coordinate expands to the interval [0, -i[3] and [3 is identified 
with the inverse temperature (Denardo and Spalucci, 1983). In this case, the 
Green's function of the fermionic field satisfies the antiperiodic boundary 
conditions. It leads to discrete momentum k ~ = irrT(2n + 1) with n = 0, 
__ 1, +_2 . . . .  in the momentum space. At finite temperature the expression 
for the Green's function (2.7) is separated into two parts 

Gf(x, x) = a=(x, x) + G~(x) (2.10) 

where G~(x, x) is (2.7), in the limit of coincidence x = x', and 
�9 ffa 

 0aj[ G~(x) - (47~)z R(x)] 
j= 

I0 ( • i ds (is) j-2 ~ ( -  1)" exp - i s m  2 nZ[32/ ,=~ - - ~ - s  / (2.11) 

is the finite-temperature contribution in the Green's function. Inserting (2.10) 
into (2.5), we find the finite-temperature density of the effective Lagrangian 
in the form 

L~(R) = L~(R) - f([3, R) (2.12) 

The first contribution in the expression (2.12), 
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L~(R) = - ~  (4"rr) -"/2 ~] tr &j(R) 
j=0 

• i ds (is) j-n/2-1 exp(-ism 2) (2.13) 

is temperature independent and divergent at n = 4, and the second one may 
be written in the following way: 

el, f(13, R) = - ~  tr dm 2 Go(x ) = ~, oLj(R)fj(~m) (2.14) 
2 j=O 

where oLj(R) = (l/2s) tr 69(R) and 2s is the dimension of the ",/matrices. The 
coefficients fj([3m) are 

m2"2s ~ (--1)" 
fo(~m) - 27r2[~ z ~=l --nz-- K2(~3mn) (2.15) 

_ m.2s ~ ( - 1 )  n Kl([tmn) (2.16) 
fl([3m) 4"rr2[ ~ ~=t n 

2S 
fz([3m) = ~ ,,~--t (-1)nK~ (2.17) 

and the modified Bessel functions K~(x) are determined by (A.8). 
The infinite, temperature-independent contribution L=(R) in the Lagran- 

gian may be canceled by a renormalization procedure of  the gravitational 
Lagrangian (2.2) in the following manner: [~g(R) = Lg(R) + L=(R). This leads 
to a renormalization of the parameters of the Lagrangian Lg. 

The finite, temperature-dependent contribution f([3, R) represents the 
density of the Helmholtz free energy in curved space-time. Using an integral 
representation for the series of  modified Bessel functions (A.10), (A.12), and 
(A.14), one can write it as a series 

f(~, R) = fo(~m) + eq(R)fl(~m) + ot2(R)fz(~3m) + "" (2.I8) 

where the first term is the standard form of the Helmholtz free energy in 
Euclidean space 

2s I d3k 1 fo(ftm) = - ~ -  (-~w)3 In( + e - ~ )  (2.19) 

with particle energy ~ = (k 2 + m2) l/z. The factor 2s = 4 reflects the existence 
of the four degrees of freedom present in the fermion field: particles and 
antiparticles, spin up, and spin down. The following terms are geometrical 



Quantum Fermi Gas in Curved Space-Time 1847 

corrections of the Riemann space-time structure with respect to the Euclidean 
one with temperature coefficients in the form 

2sf d3k ( 0@) ~ 3~([3m) = - ~ -  ~ - ln(t + e -~') (2.20) 

The method developed above does not allow us to compute the density of 
the grand thermodynamic potential; therefore, in the following calculations 
we will use the local momentum space formalism as the most convenient 
for the construction of local thermodynamics. 

3. GRAND THERMODYNAMIC POTENTIAL AND 
LOW-TEMPERATURE PROPERTIES OF FERMI GAS 

An equivalent to the Schwinger-DeWitt representation, the momentum 
space representation of the bispinor Gf(x, x') (Bunch and Parker, 1979), may 
be written as 

@(x, x') = Gf(x, y) = g-L/4(y) ~ 6Lj(x, y) - Go(y) (3.1) 
j=0 

where 

f d4 k eiky 
Go(y) = (2,rr)gk 2 + m2 (3.2) 

The Van Vleck determinant of (2.7) coincides with g-l/4(y), and {y~} are 
normal Euclidean coordinates in tangential space of the point x of manifold 
I/4) in the origin with x' (Petrov, 1969). 

To introduce temperature, we will extend the time y0 coordinate of the 
tangential space {y~} to the imaginary interval [0, -i[3] and will consider 
the fermionic field to be antiperiodic on that interval. Then, in the imaginary 
time formalism, 

t d4k l ~ i f d3k n~  ~ l 
(2"rr) 4 k2 + rrt~ ---> ~ (2,rr) 3 =- _to] + ea (3.3) 

where to, = iwT(2n + 1), n = 0, + 1, _+2 . . . . .  are Matsubara frequencies 
(Matsubara, 1955). To take into consideration the chemical potential we will 
make a shift of the frequencies to, = ton + Ix (Morley, 1978; Kapusta, 1979). 
Making the summation in (3.3), we will find Go(y) in the limit of coincidence 
x = x' in the form 
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i (  d3k ~ 1 
lim Go(y) = J x~x' ~ (2"rr) 3 . . . .  --(ran + ~)2 + ~2 

i f d3k {1 ~ ( ~-- IX ~.+IX ) }  

1 ) 
= ~ ~ exp 13(e - ix) + 1 

/ ( 1  ' )} 
+ 2--~ exp [3(e + ~) + 1 

= lim [G~-(y) + G~(y)] (3.4) 
x---)x; 

This equation describes temperature contributions for particles (ix) and 
antiparticles ( - ix )  separately. One can find the expression for the finite- 
temperature contribution in the Green's function for fermions with nonzero 
chemical potential, 

Gr Ix) = ~ ~ &j(R) (1 + ze-~') -' (3.5) 
j=0 

Then the density of the grand thermodynamic potential for fermions may be 
written as 

i I ~ 2 
o3([3, ix, R) = - ~  tr dm 2 G~(x, ix) = ~ etj(R)fj(~rn; z) (3.6) 

~m 2 j = O  

where 

and 

s I d3k f0([3m; z) = - 5  ~ ln(1 + ze -~') (3.7) 

3~(13m; z) : - ([3m; z) (3.8) 

where z = e ~  is a fugacity and the factor s = 2 (spin up, down). The 
coincidence of these two methods for calculation of the densities of thermody- 
namic potentials is obvious for ~x = 0. 

Using the equations for thermodynamic potentials, one can obtain some 
interesting properties of an ideal Fermi gas in an external gravitational field: 
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1. The Fermi distribution function of the gas in a gravitational field may 
be found from the expression nk = --0tOk([3, IX, R)/O~ for occupation numbers 
with momentum k. It has the form 

1 
F([3, R) (3.9) 

nk -- z -  ~ e ~ k  + 1 

where the function F([3, R) is described by the formula 

F([3, R) -- 1 + ~ (R)  [~ [1 - (1 + ze-~'k) -~] + "'" (3.10) 
2~k 

and depends on the curvature, temperature, and energy of the fermion. 
2. We can estimate the dependence of the chemical potential on the 

curvature of space-time in the nonrelativistic approximation. Let ck = ke/ 
2m; then from n = -Oo~(f3, IX, R) /Otz  we find the equation 

nk3(T) 
- -  - f3/2(z, R )  (3.11) 

s 

where h = (2"rr/mT) 1c2 is the thermal wavelength of the particle, and 

[ 3cq(R) 3 ~2 (R2)  ] ( 3 . 1 2 )  
f 3 t 2 ( z , R ) = f 3 / z ( z )  so 4 m 2 16 m 4 " 

is some function with respect to z, and n is the density of the Fermi gas. The 
function f3/2(z) is 

~ l z  ~ (_1)~+ l _ 4 dx 1 exp(x a) + 1 (3.13) f3/z(Z) = = - ~  f f -~  z -  

Equation (3.11) may be solved with graphical methods. As can be seen in 
Fig. 1, the fugacity (chemical potential) depends on the curvature R of the 
space-time. 

f3J2 C~.,R) 

3/2 
n(mT) / JJ 

z(R<O) z(R=O) z(R>O) z 

Fig. 1. The dependence of the fugacity on the curvature of space-time for fixed temperature 
and density. 
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3. The explicit expression for the chemical potential with respect to low 
temperatures and high densities (n~. 3 > >  1), where the quantum effects are 
essential, may be found by the calculation of (3.11) with the following 
representation of the function f3/2(z) for large z (Huang, 1963): 

4 [ Z) 3/2"rr2 ] f3/2(z) - 3 , f~  (ln + --~ (ln z) -u2 + . . .  + O(z -l)  (3.14) 

Inserting (3.12) into (3.11) and taking into account only the first term in 
(3.14), we find the Fermi energy of a gas of fermions in curved space-time 

X 2 1 + ~-~ ~-7 + . . . .  [3eF(R) (3.15) 

o r  

where 

] ~F(R) = ~(F ~ 1 + ~-~ + " "  (3.16) 

(0) = (6"rr2n12/3( 1 I 
~ \-7-) \Tin) 

is the Fermi energy in Euclidean space. Taking into account the second term 
in (3.14), we get the expression for the chemical potential 

~(r ,  R) = eF(R) 1 - i 2  ~ + "'" 

- - 4  ~ 1+ m2 i~ ~ + 

o r  

1 R 
~(T, R) = I~~ + ~ ~-5 e~ ~ + "'" (3.17) 

which describes the explicit dependence of the chemical potential of the 
fermionic gas on temperature T and the curvature R of space-time. 

4. CONCLUSION 

We connected the method of calculation of thermodynamic potentials 
of a quantum Fermi gas as local thermodynamic objects in a curved space- 
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time with finite-temperature computations of the Green's function of fermions 
by means of the local momentum space formalism. This allowed us to find 
the change in the Fermi energy for a Fermi gas in the external gravitational 
field (3.16) and get the linear dependence of the chemical potential of the gas 
(3.17) on the curvature of the space-time. In our model the Fermi distribution 
function depends also on the characteristics of the space-time and expression 
(3.9) shows its nonthermal character. The temperature of the quantum Fermi 
gas is a local thermodynamic characteristic of the system and depends on 
the selected point of the space-time manifold. 

A P P E N D I X .  I N T E G R A L  R E P R E S E N T A T I O N S  O F  M O D I F I E D  
B E S S E L  F U N C T I O N S  

Integral representations for the series of modified Bessel functions 
(2.15)-(2.17) can be calculated from the following summation formula: 

- 1  

y2 + n _ ~ l  = ~- tanh(~ry) (A.1) 
n=-~ y 

In the proper time representation the left side of equation (A. 1) can be written 
in the form 

ya + n______ll 

n :  - - o o  

= daexp( -ay  z) ~ e x p - a  n + (A.2) 

Taking into account the equation 

:~ e x p ~ - < n  - z~/  = o ~ 7  t ; )  exp~---=,,~ - 2",,iz,, ~A.3~ 
n = - - o c  = - -  

we can write (A.2) as 

y2 + n 1 

t l =  - ~  

= ~ ( -1)n  da  exp - a y  2 - - n  2 
n = _ •  a 

= 'rr + 2 ~ ( -  1)" da  exp - a y  e - - -  r/2 (A.4) 
y n=l a 

The right side of (A. 1) is 
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7r tanh(wy) - w 2~r ( A . 5 )  
y y y(e 2€ + 1) 

Therefore, we get from (A.4) and (A.5) the following useful equation: 

z(e z + 1) 2'rr2 n=lE ( - l )  n dc~ 

z2 ,.rr 2 ) 
• exp - a  4,rr 2 a n2 (A.6) 

Moreover, we may consider that z 2 = g,(x 2) is a function of variable x ~ R 3 
with a parameter a, namely z 2 = x 2 + a 2. Making the integration with respect 
to x, one gets 

j " d3x 
((x2 + a2)l/2{exp[(x2 + a2) 1/2] + 1}) -1 

= _12 ~--1= ( -  1)" d~ ~-2 exp - a  4~r 2 --c~ nz (A.7) 

The modified Bessel function may be written as 

;~  d a" a~-~ exp( -~ /a  ~ )  = 2(~f/2K~(2(~/) '/2 ) (A.8) 

Then (A.7) becomes 

f d3 x ((x 2 + a2)m{exp[(xZ + a2) u2] + 1 })-1 

2 = n 
(A.9) 

Scaling x and a with a parameter [3 as (x, a) = [3(k, m), we write (A.9) in 
the form 

f d3k 2 _ m n~=l (--1) n Kl([3rnn ) 
(2703 e[exp([3e) + 1] [3 'rr  2 = n 

(A. 10) 

where e = (k 2 + m 2)~/2. Differentiating (A.7) with respect to the parameter 
a, we get 
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- ((x 2 + aZ)l/Z{exp[(x 2 + a2) 1/2] + 1}) -1 

1 
c~ 

~=~ (-1)nKo(an) (A.11) I 

4~ 2 = 

or, in the new variables, 

~ ~m-Tm 2 e[exp([3e)+ 1] 4~r2 = (-1)nKo([3mn) (A.12) 

Making the integration in (A.7) with respect to parameter a and using the 
equation 

fi ~da 2 ((x 2 + a2)l/2{exp[(x 2 + a2) 1/2] + 1}) - l  
2 

= 2 ln{1 + exp [ - (x  2 + a2)1/2]} (A.13) 

we find in the new variables the equation 

1 I d3k - ~  ~ ln[1 + exp(-[3,)]  (A.14) 

__ m 2 ~ ( _ _ l ) n  

2([3"rr) 2 ~--1 ~ K2([3mn) 

The high-temperature asymptotes ([3m < <  1 ) o f  (A.9), (A.11), 
and (A. 14), 

([3,rr) 22m2 ~ ~ 21)~ 18013 ~ 7~2 1 - ~  m2 1 ( [3m 8 ~ ~) n~=l K2([3mn ) - + + m 4 In + y - 

= - -  I[D ) : - -  q- m 2 In + -- 
[37r 2 n 12132 4 

1 ~ (_l)~Ko([3mn) = 4 In + y (A.15) 
2~ 2 n= ~ 

are useful for some thermodynamic calculations. 
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